Phospholipase C-delta1 rescues intracellular Ca2+ overload in ischemic heart and hypoxic neonatal cardiomyocytes

J Steroid Biochem Mol Biol. 2004 Jul;91(3):131-8. doi: 10.1016/j.jsbmb.2004.02.009.

Abstract

Ischemia and simulated ischemic conditions cause intracellular Ca2+ overload in the myocardium. The relationship between ischemia injury and Ca2+ overload has not been fully characterized. The aim of the present study was to investigate the expression and characteristics of PLC isozymes in myocardial infarction-induced cardiac remodeling and heart failure. In normal rat heart tissue, PLC-delta1 (about 44 ng/mg of heart tissue) was most abundant isozymes compared to PLC-gamma1 (6.8 ng/mg) and PLC-beta1 (0.4 ng/mg). In ischemic heart and hypoxic neonatal cardiomyocytes, PLC-delta1, but not PLC-beta1 and PLC-gamma1, was selectively degraded, a response that could be inhibited by the calpain inhibitor, calpastatin, and by the caspase inhibitor, zVAD-fmk. Overexpression of the PLC-delta1 in hypoxic neonatal cardiomyocytes rescued intracellular Ca2+ overload by ischemic conditions. In the border zone and scar region of infarcted myocardium, and in hypoxic neonatal cardiomyocytes, the selective degradation of PLC-delta1 by the calcium sensitive proteases may play important roles in intracellular Ca2+ regulations under the ischemic conditions. It is suggested that PLC isozyme-changes may contribute to the alterations in calcium homeostasis in myocardial ischemia.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Animals, Newborn
  • Calcium / metabolism*
  • Cell Hypoxia*
  • Immunohistochemistry
  • Isoenzymes / metabolism*
  • Male
  • Myocardial Ischemia / enzymology
  • Myocardial Ischemia / metabolism*
  • Phospholipase C delta
  • Rats
  • Type C Phospholipases / metabolism*

Substances

  • Isoenzymes
  • Type C Phospholipases
  • Phospholipase C delta
  • Plcd1 protein, rat
  • Calcium