Control of myocardial oxygen consumption in transgenic mice overexpressing vascular eNOS

Am J Physiol Heart Circ Physiol. 2004 Nov;287(5):H2115-21. doi: 10.1152/ajpheart.00267.2004. Epub 2004 Jul 29.

Abstract

Our objective was to investigate the potential role of selective endothelial nitric oxide (NO) synthase (eNOS) overexpression in coronary blood vessels in the control of myocardial oxygen consumption (MVO2). Transgenic (Tg) eNOS-overexpressing mice (eNOS Tg) (n=22) and wild-type (WT) mice (n=24) were studied. Western blot analysis indicated greater than sixfold increase of eNOS in cardiac tissue. Echocardiography in awake mice indicated no difference in cardiac function between WT and eNOS Tg; however, systolic pressure in eNOS Tg mice decreased significantly (126 +/- 2.3 to 109 +/- 2.3 mmHg; P <0.05), whereas heart rate (HR) was not different. Total peripheral resistance (TPR) was also decreased (9.8 +/- 0.8 to 7.6 +/- 0.4 4 mmHg.ml(-1).min; P <0.05) in eNOS Tg. Furthermore, female eNOS Tg mice showed even lower TPR (7.2 +/- 0.4 mmHg.ml(-1).min) compared with male eNOS mice (8.6 +/- 0.5, mmHg.ml.min(-1); P <0.05). Left ventricular slices were isolated from WT and eNOS Tg mice. With the use of a Clark-type oxygen electrode in an airtight bath, MVO2 was determined as the percent decrease during increasing doses (10(-10) to 10(-4) mol/l) of bradykinin (BK), carbachol (CCh), forskolin (10(-12) to 10(-6) mol/l), or S-nitroso-N-acetyl penicillamine (SNAP; 10(-7) to 10(-4) mol/l). Baseline MVO2 was not different between WT (181 +/- 13 nmol.g(-1).min(-1)) and eNOS Tg (188 +/- 14 nmol.g(-1).min(-1)). BK decreased MVO2 (10(-4) mol/l) in WT by 17% +/- 1.1 and 33% +/- 2.7 in eNOS Tg (P < 0.05). CCh also decreased MVO2, 10(-4) mol/l, in WT by 20% +/- 1.7 and 31% +/- 2.0 in eNOS Tg (P <0.05). Forskolin (10(-6) mol/l) or SNAP (10(-4) mol/l) also decreased MVO2 in WT by 24% +/- 2.8 and 36% +/- 1.8 versus eNOS 31% +/- 1.8 and 37% +/- 3.5, respectively. N-nitro-L-arginine methyl ester (10(-3) mol/l) inhibited the MVO2 reduction to BK, CCh, and forskolin by a similar degree (P <0.05), but not to SNAP. Thus selective overexpression of eNOS in cardiac blood vessels in mice enhances the control of MVO2 by eNOS-derived NO.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Blood Pressure
  • Blotting, Western
  • Bradykinin / administration & dosage
  • Bradykinin / pharmacology
  • Carbachol / administration & dosage
  • Carbachol / pharmacology
  • Colforsin / administration & dosage
  • Colforsin / pharmacology
  • Dose-Response Relationship, Drug
  • Echocardiography
  • Female
  • Hemodynamics
  • Humans
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Transgenic
  • Myocardium / enzymology
  • Myocardium / metabolism*
  • Nitric Oxide Synthase / metabolism*
  • Nitric Oxide Synthase Type II
  • Nitric Oxide Synthase Type III
  • Oxygen Consumption* / drug effects
  • S-Nitroso-N-Acetylpenicillamine / administration & dosage
  • S-Nitroso-N-Acetylpenicillamine / pharmacology
  • Sex Characteristics

Substances

  • Colforsin
  • S-Nitroso-N-Acetylpenicillamine
  • Carbachol
  • NOS3 protein, human
  • Nitric Oxide Synthase
  • Nitric Oxide Synthase Type II
  • Nitric Oxide Synthase Type III
  • Nos3 protein, mouse
  • Bradykinin