Epidemiological and biochemical studies strongly implicate a role for cholesterol in the pathogenesis of Alzheimer's disease (AD). Mutation in the PS-1 and APP genes, which increases production of the highly amyloidogenic amyloid beta-peptide (Abeta42), is the major cause of familial AD. The AD brain is under significant oxidative stress, including protein oxidation and lipid peroxidation. In the present study, protein oxidation and lipid peroxidation were compared in the brain homogenates from knock-in mice expressing mutant human PS-1 and APP in relation to the intake of dietary cholesterol. The APP and PS-1 mice displayed increased oxidative stress as measured by protein oxidation and lipid peroxidation, independent of dietary cholesterol. These results are discussed with reference to proposed therapeutic strategies of AD.