Solvation and the hidden thermodynamics of a zinc finger probed by nonstandard repair of a protein crevice

Protein Sci. 2004 Dec;13(12):3115-26. doi: 10.1110/ps.04866404.

Abstract

The classical Zn finger contains a phenylalanine at the crux of its three architectural elements: a beta-hairpin, an alpha-helix, and a Zn(2+)-binding site. Surprisingly, phenylalanine is not required for high-affinity Zn2+ binding, but instead contributes to the specification of a precise DNA-binding surface. Substitution of phenylalanine by leucine leads to a floppy but native-like structure whose Zn affinity is maintained by marked entropy-enthalpy compensation (DeltaDeltaH -8.3 kcal/mol and -TDeltaDeltaS 7.7 kcal/mol). Phenylalanine and leucine differ in shape, size, and aromaticity. To distinguish which features correlate with dynamic stability, we have investigated a nonstandard finger containing cyclohexanylalanine at this site. The structure of the nonstandard finger is similar to that of the native domain. The cyclohexanyl ring assumes a chair conformation, and conformational fluctuations characteristic of the leucine variant are damped. Although the nonstandard finger exhibits a lower affinity for Zn2+ than does the native domain (DeltaDeltaG -1.2 kcal/mol), leucine-associated perturbations in enthalpy and entropy are almost completely attenuated (DeltaDeltaH -0.7 kcal/mol and -TDeltaDeltaS -0.5 kcal/mol). Strikingly, global changes in entropy (as inferred from calorimetry) are in each case opposite in sign from changes in configurational entropy (as inferred from NMR). This seeming paradox suggests that enthalpy-entropy compensation is dominated by solvent reorganization rather than nominal molecular properties. Together, these results demonstrate that dynamic and thermodynamic perturbations correlate with formation or repair of a solvated packing defect rather than type of physical interaction (aromatic or aliphatic) within the core.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Binding Sites
  • Humans
  • Models, Molecular
  • Molecular Sequence Data
  • Phenylalanine / chemistry
  • Proteins / chemistry
  • Solvents / chemistry*
  • Thermodynamics*
  • Zinc Fingers*

Substances

  • Proteins
  • Solvents
  • Phenylalanine