Apoptosis and inhibition of mitosis are primary mechanisms mediating androgen ablation therapy-induced regression of prostate cancer (PCa). However, PCa readily becomes androgen independent, leading to fatal disease. Up-regulated growth and survival signaling is implicated in development of resistance to androgen ablation therapy. We are testing the hypothesis that insulin-like growth factor (IGF) responsiveness is required for androgen-independent (AI) progression. Using the LNCaP human PCa progression model, we have determined that IGF-I-mediated protection from apoptotic stress and enhanced mitotic activity is androgen dependent in LNCaP cells but is androgen independent in lineage-derived C4-2 cells. Both cell lines exhibit androgen-responsive patterns of IGF-I receptor (IGF-IR) expression, activation, and signaling to insulin receptor substrate-2 and AKT. However, C4-2 cells express higher levels of IGF-IR mRNA and protein and exhibit enhanced IGF-I-mediated phosphorylation and downstream signaling under androgen-deprived conditions. In comparisons of naive and AI metastatic human PCa specimens, we have confirmed that IGF-IR levels are elevated in advanced disease. Together with our LNCaP/C4-2 AI progression model data, these results indicate that increased IGF-IR expression is associated with AI antiapoptotic and promitotic IGF signaling in PCa disease progression.