Six overlapping BAC clones covering the Hv-eIF4E gene region in barley were sequenced in their entire length, resulting in a 439.7 kb contiguous sequence. The contig contains only two genes, Hv-eIF4E and Hv-MLL, which are located in a small gene island and more than 88% of the sequence is composed of transposable elements. A detailed analysis of the repetitive component revealed that this chromosomal region was affected by multiple major duplication and deletion events as well as the insertion of numerous transposable elements, resulting in a complete reshuffling of genomic DNA. Resolving this highly complex pattern resulted in a model unraveling evolutionary events that shaped this region over an estimated 7 million years. Duplications and deletions caused by illegitimate recombination and unequal crossing over were major driving forces in the evolution of the Hv-eIF4E region, equaling or exceeding the effects of transposable element activities. In addition to a dramatic reshuffling of the repetitive portion of the sequence, we also found evidence for important contributions of illegitimate recombination and transposable elements to the sequence organization of the gene island containing Hv-eIF4E and Hv-MLL.