We used gene targeting in mice to insert a His(6)-tagged mouse c-Myc cDNA, Myc(His), head to head into the mouse immunoglobulin heavy-chain locus, Igh, just 5' of the intronic enhancer, Emu. The insertion of Myc(His) mimicked both the human t(8;14)(q24;q32) translocation that results in the activation of MYC in human endemic Burkitt lymphomas and the homologous mouse T(12;15) translocation that deregulates Myc in certain mouse plasmacytomas. Beginning at the age of 6 months, Myc(His) transgenic mice developed B-cell and plasma neoplasms, such as IgM(+) lymphoblastic B-cell lymphomas, Bcl-6(+) diffuse large B-cell lymphomas, and CD138(+) plasmacytomas, with an overall incidence of 68% by 21 months. Molecular studies of lymphoblastic B-cell lymphoma, the most prevalent neoplasm (50% of all tumors), showed that the lymphomas were clonal, overexpressed Myc(His), and exhibited the P2 to P1 promoter shift in Myc expression, a hallmark of MYC/Myc deregulation in human endemic Burkitt lymphoma and mouse plasmacytoma. Only 1 (6.3%) of 16 lymphoblastic B-cell lymphomas contained a BL-typical point mutation in the amino-terminal transactivation domain of Myc(His), suggesting that most of these tumors are derived from naive, pregerminal center B cells. Twelve (46%) of 26 lymphoblastic B-cell lymphomas exhibited changes in the p19(Arf)-Mdm2-p53 tumor suppressor axis, an important pathway for Myc-dependent apoptosis. We conclude that Myc(His) insertion into Igh predictably induces B-cell and plasma-cell tumors in mice, providing a valuable mouse model for understanding the transformation-inducing consequences of the MYC/Myc-activating endemic Burkitt lymphoma t(8;14)/plasmacytoma T(12;15) translocation.