Changes in gene expression associated with loss of function of the NSDHL sterol dehydrogenase in mouse embryonic fibroblasts

J Lipid Res. 2005 Jun;46(6):1150-62. doi: 10.1194/jlr.M400462-JLR200. Epub 2005 Apr 1.

Abstract

Seven human disorders of postsqualene cholesterol biosynthesis have been described. One of these, congenital hemidysplasia with ichthyosiform nevus and limb defects (CHILD) syndrome, results from mutations in the X-linked gene NADH sterol dehydrogenase-like (NSDHL) encoding a sterol dehydrogenase. A series of mutant alleles of the murine Nsdhl gene are carried by bare patches (Bpa) mice, with Bpa(1H) representing a null allele. Heterozygous Bpa(1H) females display skin and skeletal abnormalities in a distribution reflecting random X inactivation, whereas hemizygous male embryos die before embryonic day 10.5. To investigate the molecular basis of defects associated with perturbations in cholesterol biosynthesis, microarray analysis was performed comparing gene expression in embryonic fibroblasts expressing the Bpa(1H) allele versus wild-type (wt) cells. Labeled cDNAs from cells grown in normal serum or lipid-depleted serum (LDS) were hybridized to microarrays containing 22,000 mouse genes. Among 44 genes that showed higher expression in the Bpa(1H) versus wt cells grown in LDS, 11 function in cholesterol biosynthesis, 7 are involved in fatty acid synthesis, 3 (Srebp2, Insig1, and Orf11) encode sterol-regulatory proteins, and 2 (Ldlr and StarD4) are lipid transporters. Of the 21 remaining genes, 16 are known genes, some of which have been implicated previously in cholesterol homeostasis or lipid-mediated signaling, and 5 are uncharacterized cDNA clones.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • 3-Hydroxysteroid Dehydrogenases
  • Alleles
  • Animals
  • Cell Separation
  • Cholesterol / metabolism
  • DNA, Complementary / metabolism
  • Down-Regulation
  • Fibroblasts / metabolism*
  • Flow Cytometry
  • Gene Expression Regulation*
  • Green Fluorescent Proteins / metabolism
  • Heterozygote
  • Homozygote
  • Hydroxysteroid Dehydrogenases / genetics*
  • Hydroxysteroid Dehydrogenases / physiology*
  • Mice
  • Mice, Inbred C57BL
  • Mice, Inbred CBA
  • Mice, Transgenic
  • Models, Genetic
  • Mutation
  • Oligonucleotide Array Sequence Analysis
  • Polymerase Chain Reaction
  • Reverse Transcriptase Polymerase Chain Reaction
  • Sequence Analysis, DNA
  • Time Factors
  • Up-Regulation

Substances

  • DNA, Complementary
  • Green Fluorescent Proteins
  • Cholesterol
  • 3-Hydroxysteroid Dehydrogenases
  • Hydroxysteroid Dehydrogenases
  • Nsdhl protein, human