Acetylcholine causes endothelium-dependent contraction of mouse arteries

Am J Physiol Heart Circ Physiol. 2005 Sep;289(3):H1027-32. doi: 10.1152/ajpheart.00226.2005. Epub 2005 May 6.

Abstract

The goal of this study was to determine whether acetylcholine evokes endothelium-dependent contraction in mouse arteries and to define the mechanisms involved in regulating this response. Arterial rings isolated from wild-type (WT) and endothelial nitric oxide (NO) synthase knockout (eNOS(-/-)) mice were suspended for isometric tension recording. In abdominal aorta from WT mice contracted with phenylephrine, acetylcholine caused a relaxation that reversed at the concentration of 0.3-3 microM. After inhibition of NO synthase [with N(omega)-nitro-l-arginine methyl ester (l-NAME), 1 mM], acetylcholine (0.1-10 microM) caused contraction under basal conditions or during constriction to phenylephrine, which was abolished by endothelial denudation. This contraction was inhibited by the cyclooxygenase inhibitor indomethacin (1 muM) or by a thromboxane A(2) (TxA(2)) and/or prostaglandin H(2) receptor antagonist SQ-29548 (1 microM) and was associated with endothelium-dependent generation of the TxA(2) metabolite TxB(2.) Also, SQ-29548 (1 microM) abolished the reversal in relaxation evoked by 0.3-3 microM acetylcholine and subsequently enhanced the relaxation to the agonist. The magnitude of the endothelium-dependent contraction to acetylcholine (0.1-10 microM) was similar in aortas from WT mice treated in vitro with l-NAME and from eNOS(-/-) mice. In addition, we found that acetylcholine (10 microM) also caused endothelium-dependent contraction in carotid and femoral arteries of eNOS(-/-) mice. These results suggest that acetylcholine initiates two competing responses in mouse arteries: endothelium-dependent relaxation mediated predominantly by NO and endothelium-dependent contraction mediated most likely by TxA(2).

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Acetylcholine / pharmacology*
  • Animals
  • Aorta, Abdominal / drug effects
  • Aorta, Abdominal / physiology
  • Carotid Arteries / drug effects
  • Carotid Arteries / physiology
  • Endothelium, Vascular / drug effects*
  • Endothelium, Vascular / physiology
  • Femoral Artery / drug effects
  • Femoral Artery / physiology
  • In Vitro Techniques
  • Isometric Contraction / drug effects
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Nitric Oxide Synthase / genetics
  • Nitric Oxide Synthase Type II
  • Nitric Oxide Synthase Type III
  • Vasoconstriction / drug effects*
  • Vasodilator Agents / pharmacology*

Substances

  • Vasodilator Agents
  • Nitric Oxide Synthase
  • Nitric Oxide Synthase Type II
  • Nitric Oxide Synthase Type III
  • Nos3 protein, mouse
  • Acetylcholine