Porous linear-polymer penetrating networks (semi-IPNs) were prepared by the radical polymerization of acrylic acid (AAc) inside porous poly(N-isopropylacrylamide) hydrogels with "nano-sized tract networks (nano-tracts)." The deswelling behavior was investigated by measuring the time course of the swelling ratio change of the semi-IPNs just after the temperature or pH was changed. Although the incorporation of PAAc linear chains into the PNIPAAm hydrogel networks should facilitate deswelling, nonporous semi-IPNs showed only a slow thermoresponse under low pH conditions, and a slow pH-response under a high temperature. On the other hand, the porous semi-IPNs showed a rapid deswelling in response to either a change in pH or temperature, regardless of the environment, presumably due to the nano-tracts through which the water was rapidly released from the hydrogel without any interference by network shrinking. The novel network design of these nano-tracted semi-IPNs may be useful for high performance, dual molecule-release functions.