Long-term exposure to low levels of lead (Pb2+) has been shown to produce learning and memory deficits in rodents and humans. These deficits are thought to be associated with altered brain monoamine neurotransmission. Increased brain 5-HT (5-hydroxytryptamine; serotonin) activity is thought to be a prerequisite for maintaining control over the cognitive information process, and is said to have a role in learning and memory. This study was designed to investigate the effects of Pb2+ administration on brain 5-HT metabolism and memory function in rats. Rats were injected daily for three weeks with Pb2+-acetate at a dose of 100 mg/kg body weight. The assessment of memory was done using the Radial arm maze (RAM) and Passive avoidance tests. The results showed spatial working memory (SWM) deficits as well as decreased brain 5-HT metabolism. Increased serotonin activity is considered to be an indication of improved cognitive performance. The results are discussed in the context of lead-induced decreases in 5-HT metabolism playing a role in the impairment of memory.