Purpose: The initial goal of this study was to test the immunologic and clinical effects of a new cancer vaccine consisting of dendritic cells (DC) transduced with the full-length wild-type p53 gene delivered via an adenoviral vector in patients with extensive stage small cell lung cancer.
Experimental design: Twenty-nine patients with extensive stage small cell lung cancer were vaccinated repeatedly at 2-week intervals. Most of the patients received three immunizations. p53-specific responses were evaluated, and phenotype and function of T cells, DCs, and immature myeloid cells were analyzed and correlated with antigen-specific immune responses. Objective clinical response to vaccination as well as subsequent chemotherapy was evaluated.
Results: p53-specific T cell responses to vaccination were observed in 57.1% of patients. Immunologic responses to vaccination were positively associated with a moderate increase in the titer of antiadenovirus antibodies, and negatively with an accumulation of immature myeloid cells. One patient showed a clinical response to vaccination whereas most of the patients had disease progression. However, we observed a high rate of objective clinical responses to chemotherapy (61.9%) that immediately followed vaccination. Clinical response to subsequent chemotherapy was closely associated with induction of immunologic response to vaccination.
Conclusions: This study provides clinical support for an emerging paradigm in cancer immunotherapy, wherein optimal use of vaccination might be more effective, not as a separate modality, but in direct combination with chemotherapy.