How does salt retention raise blood pressure?

Am J Physiol Regul Integr Comp Physiol. 2006 Mar;290(3):R514-23. doi: 10.1152/ajpregu.00819.2005.

Abstract

A critical question in hypertension research is: How is long-term blood pressure controlled? Excessive NaCl ingestion or NaCl retention by the kidneys and the consequent tendency toward plasma volume expansion lead to hypertension. Nevertheless, the precise mechanisms linking salt to high blood pressure are unresolved. The discovery of endogenous ouabain, an adrenocortical hormone, provided an important clue. Ouabain, a selective Na+ pump inhibitor, has cardiotonic and vasotonic effects. Plasma endogenous ouabain levels are significantly elevated in approximately 40% of patients with essential hypertension and in animals with several forms of salt-dependent hypertension. Also, prolonged ouabain administration induces hypertension in rodents. Mice with mutant Na+ pumps or Na/Ca exchangers (NCX) and studies with a ouabain antagonist and an NCX blocker are revealing the missing molecular mechanisms. These data demonstrate that alpha2 Na+ pumps and NCX1 participate in long-term regulation of vascular tone and blood pressure. Pharmacological agents or mutations in the alpha2 Na+ pump that interfere with the action of ouabain on the pump, and reduced NCX1 expression or agents that block NCX all impede the development of salt-dependent or ouabain-induced hypertension. Conversely, nanomolar ouabain, reduced alpha2 Na+ pump expression, and smooth muscle-specific overexpression of NCX1 all induce hypertension. Furthermore, ouabain and reduced alpha2 Na+ pump expression increase myogenic tone in isolated mesenteric small arteries in vitro, thereby tying these effects directly to the elevation of blood pressure. Thus, endogenous ouabain, and vascular alpha2 Na+ pumps and NCX1, are critical links between salt and hypertension. New pharmacological agents that act on these molecular links have potential in the clinical management of hypertension.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Blood Pressure*
  • Humans
  • Hypertension / etiology
  • Hypertension / physiopathology*
  • Kidney / physiopathology*
  • Ouabain / metabolism*
  • Sodium Chloride / metabolism
  • Sodium Chloride, Dietary / adverse effects
  • Sodium Chloride, Dietary / metabolism*
  • Sodium-Potassium-Exchanging ATPase / metabolism*
  • Water-Electrolyte Imbalance / etiology*
  • Water-Electrolyte Imbalance / physiopathology*

Substances

  • Sodium Chloride, Dietary
  • Sodium Chloride
  • Ouabain
  • Sodium-Potassium-Exchanging ATPase