CXCL8, a ligand for the chemokine receptor CXCR2, was recently reported to be a transcriptional target of Ras signaling, but its role in Ras-induced tumorigenesis has not been fully defined. Here, we investigated the role of KC and MIP-2, the murine homologues of CXCL8, in Kras(LA1) mice, which develop lung adenocarcinoma owing to somatic activation of the KRAS oncogene. We first investigated biological evidence of CXCR2 ligands in Kras(LA1) mice. Malignant progression of normal alveolar epithelial cells to adenocarcinoma in Kras(LA1) mice was associated with enhanced intralesional vascularity and neutrophilic inflammation, which are hallmarks of chemoattraction by CXCR2 ligands. In in vitro migration assays, supernatants of bronchoalveolar lavage samples from Kras(LA1) mice chemoattracted murine endothelial cells, alveolar inflammatory cells, and the LKR-13 lung adenocarcinoma cell line derived from Kras(LA1) mice, an effect that was abrogated by pretreatment of the cells with a CXCR2-neutralizing antibody. CXCR2 and its ligands were highly expressed in LKR-13 cells and premalignant alveolar lesions in Kras(LA1) mice. Treatment of Kras(LA1) mice with a CXCR2-neutralizing antibody inhibited the progression of premalignant alveolar lesions and induced apoptosis of vascular endothelial cells within alveolar lesions. Whereas the proliferation of LKR-13 cells in vitro was resistant to treatment with the antibody, LKR-13 cells established as syngeneic tumors were sensitive, supporting a role for the tumor microenvironment in the activity of CXCR2. Thus, high expression of CXCR2 ligands may contribute to the expansion of early alveolar neoplastic lesions induced by oncogenic KRAS.