The role of the interaction of CD2 molecules with lymphocyte function-associated antigen 3 (LFA-3) in facilitating nominal antigen recognition by T lymphocytes was studied by utilizing an HLA-DR4-restricted CD4+ cytotoxic human T-cell clone specific for human immunodeficiency virus envelope glycoprotein gp120 as a responder and murine fibroblasts transfected with human class II major histocompatibility complex (MHC) and/or human LFA-3 molecules as antigen-presenting cells (APC). Although expression of the DR4 restriction element in fibroblasts is sufficient for T-cell recognition of a gp120 peptide as judged by induction of proliferation coexpression of human LFA-3 on DR4+ APC decreases the molar requirement of nominal antigen by greater than one order of magnitude. Both LFA-3 and the relevant class II MHC molecules are necessary for antigen-independent conjugate formation, but the binding is further enhanced by specific nominal antigen. CD2-LFA-3 interaction is independent of T-cell receptor-MHC interaction and contributes directly to the stabilized conjugate between the T cell and LFA-3-bearing APC; soluble CD2 and monoclonal antibodies to LFA-3 and CD2 reduce T-cell-APC binding to the level mediated by nominal antigen and MHC. During conjugate formation, CD2 but not CD3 molecules are reorganized into the cell-cell interaction site in an antigen-independent manner. Thus, reorganization and/or coassociation of CD2 with CD3 molecules is not essential for T-cell activation.