Changes in the hemodynamic environment (e.g., hypertension, increased blood flow/shear stress) are known to lead to vascular remodeling; however, the underlying mechanisms by which hemodynamic forces control gene expression in vascular cells are not yet completely understood. This review considers how mechanosensitive generation of reactive oxygen species (ROS) by NAD(P)H oxidases and other sources interacts with downstream signaling systems [including activation of nuclear factor kappa B (NF-kappaB) and AP-1] that modulate the phenotype of endothelial and smooth muscle cells, leading to vascular remodeling. We propose a model for an interaction between direct mechanosensitive ROS signaling and pathways activated by pressure-induced upregulation of prooxidant paracrine signaling mechanisms [local renin-angiotensin system, TNF-alpha- converting enzyme (TACE)/tumor necrosis factor alpha (TNF-alpha) system, and endothelin signaling].