Background: Intracellular proteins involved in oxidative stress and apoptosis are nitrated in diseased tissues but not in normal tissues; definitive evidence to support a causative link between a specific protein that is nitratively modified with tissue injury in a specific disease is limited, however. The aims of the present study were to determine whether thioredoxin (Trx), a novel antioxidant and antiapoptotic molecule, is susceptible to nitrative inactivation and to establish a causative link between Trx nitration and postischemic myocardial apoptosis.
Methods and results: In vitro exposure of human Trx-1 to 3-morpholinosydnonimine resulted in significant Trx-1 nitration and almost abolished Trx-1 activity. 3-morpholinosydnonimine-induced nitrative Trx-1 inactivation was completely blocked by MnTE-2-PyP(5+) (a superoxide dismutase mimetic) and markedly attenuated by PTIO (a nitric oxide scavenger). Administration of either reduced or oxidized Trx-1 in vivo attenuated myocardial ischemia/reperfusion injury (>50% reduction in apoptosis and infarct size, P<0.01). However, administration of nitrated Trx-1 failed to exert a cardioprotective effect. In cardiac tissues obtained from ischemic/reperfused heart, significant Trx-1 nitration was detected, Trx activity was markedly inhibited, Trx-1/ASK1 (apoptosis signal-regulating kinase-1) complex formation was abolished, and apoptosis signal-regulating kinase-1 activity was increased. Treatment with either FP15 (a peroxynitrite decomposition catalyst) or MnTE-2-PyP(5+) 10 minutes before reperfusion blocked nitrative Trx inactivation, attenuated apoptosis signal-regulating kinase-1 activation, and reduced postischemic myocardial apoptosis.
Conclusions: These results strongly suggest that nitrative inactivation of Trx plays a proapoptotic role under those pathological conditions in which production of reactive nitrogen species is increased and that antinitrating treatment may have therapeutic value in those diseases, such as myocardial ischemia/reperfusion, in which pathological apoptosis is increased.