The effectiveness of anti-retroviral therapies (ART) depends on its ultimate ability to clear reservoirs of continuous human immunodeficiency virus (HIV) infection. We reasoned that a principal vehicle for viral dissemination, the mononuclear phagocytes could also serve as an ART transporter and as such improve therapeutic indices. A nanoparticle-indinavir (NP-IDV) formulation was made and taken up into and released from vacuoles of human monocyte-derived macrophages (MDM). Following a single NP-IDV dose, drug levels within and outside MDM remained constant for 6 days without cytotoxicity. Administration of NP-IDV when compared to equal drug levels of free soluble IDV significantly blocked induction of multinucleated giant cells, production of reverse transcriptase activity in culture fluids and cell-associated HIV-1p24 antigens after HIV-1 infection. These data provide "proof of concept" for the use of macrophage-based NP delivery systems for human HIV-1 infections.