The Mi-9 gene from Solanum arcanum conferring heat-stable resistance to root-knot nematodes is a homolog of Mi-1

Plant Physiol. 2007 Feb;143(2):1044-54. doi: 10.1104/pp.106.089615. Epub 2006 Dec 15.

Abstract

Resistance conferred by the Mi-1 gene from Solanum peruvianum is effective and widely used for limiting root-knot nematode (Meloidogyne spp.) yield loss in tomato (Solanum lycopersicum), but the resistance is ineffective at soil temperatures above 28 degrees C. Previously, we mapped the heat-stable resistance gene Mi-9 in Solanum arcanum accession LA2157 to the short arm of chromosome 6, in a genetic interval as Mi-1 and the Cladosporium fulvum resistance gene Cf2. We developed a fine map of the Mi-9 region by resistance and marker screening of an F2 population and derived F3 families from resistant LA2157 x susceptible LA392. Mi-1 intron 1 flanking primers were designed to amplify intron 1 and fingerprint Mi-1 homologs. Using these primers, we identified seven Mi-1 homologs in the mapping parents. Cf-2 and Mi-1 homologs were mapped on chromosome 6 using a subset of the F2. Cf-2 homologs did not segregate with Mi-9 resistance, but three Mi-1 homologs (RH1, RH2, and RH4) from LA2157 and one (SH1) from LA392 colocalized to the Mi-9 region. Reverse transcriptase-polymerase chain reaction analysis indicated that six Mi-1 homologs are expressed in LA2157 roots. We targeted transcripts of Mi-1 homologs for degradation with tobacco (Nicotiana tabacum) rattle virus (TRV)-based virus-induced gene silencing using Agrobacterium infiltration with a TRV-Mi construct. In most LA2157 plants infiltrated with the TRV-Mi construct, Mi-9-mediated heat-stable root-knot nematode resistance was compromised at 32 degrees C, indicating that the heat-stable resistance is mediated by a homolog of Mi-1.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Chromosome Mapping
  • Chromosomes, Plant
  • Gene Expression Regulation, Plant / physiology*
  • Gene Silencing
  • Hot Temperature
  • Phylogeny
  • Plant Diseases / parasitology
  • Plant Proteins / genetics*
  • Plant Proteins / metabolism*
  • Solanum / genetics*
  • Solanum / metabolism*
  • Tylenchoidea / physiology*

Substances

  • MI-1 protein, Lycopersicon esculentum
  • Plant Proteins