X-ray sequence and crystal structure of luffaculin 1, a novel type 1 ribosome-inactivating protein

BMC Struct Biol. 2007 Apr 30:7:29. doi: 10.1186/1472-6807-7-29.

Abstract

Background: Protein sequence can be obtained through Edman degradation, mass spectrometry, or cDNA sequencing. High resolution X-ray crystallography can also be used to derive protein sequence information, but faces the difficulty in distinguishing the Asp/Asn, Glu/Gln, and Val/Thr pairs. Luffaculin 1 is a new type 1 ribosome-inactivating protein (RIP) isolated from the seeds of Luffa acutangula. Besides rRNA N-glycosidase activity, luffaculin 1 also demonstrates activities including inhibiting tumor cells' proliferation and inducing tumor cells' differentiation.

Results: The crystal structure of luffaculin 1 was determined at 1.4 A resolution. Its amino-acid sequence was derived from this high resolution structure using the following criteria: 1) high resolution electron density; 2) comparison of electron density between two molecules that exist in the same crystal; 3) evaluation of the chemical environment of residues to break down the sequence assignment ambiguity in residue pairs Glu/Gln, Asp/Asn, and Val/Thr; 4) comparison with sequences of the homologous proteins. Using the criteria 1 and 2, 66% of the residues can be assigned. By incorporating with criterion 3, 86% of the residues were assigned, suggesting the effectiveness of chemical environment evaluation in breaking down residue ambiguity. In total, 94% of the luffaculin 1 sequence was assigned with high confidence using this improved X-ray sequencing strategy. Two N-acetylglucosamine moieties, linked respectively to the residues Asn77 and Asn84, can be identified in the structure. Residues Tyr70, Tyr110, Glu159 and Arg162 define the active site of luffaculin 1 as an RNA N-glycosidase.

Conclusion: X-ray sequencing method can be effective to derive sequence information of proteins. The evaluation of the chemical environment of residues is a useful method to break down the assignment ambiguity in Glu/Gln, Asp/Asn, and Val/Thr pairs. The sequence and the crystal structure confirm that luffaculin 1 is a new type 1 RIP.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Binding Sites
  • Crystallization
  • Crystallography, X-Ray / methods*
  • Glycoproteins / chemistry*
  • Models, Molecular
  • Molecular Sequence Data
  • Plant Proteins / chemistry*
  • Protein Conformation*
  • Ribosome Inactivating Proteins, Type 1
  • Sequence Analysis, Protein*
  • Sequence Homology, Amino Acid

Substances

  • Glycoproteins
  • Plant Proteins
  • Ribosome Inactivating Proteins, Type 1
  • luffaculin protein, Luffa acutangula

Associated data

  • PDB/2OQA