TFIID binding in the minor groove of DNA at the TATA element was demonstrated by methylation interference and hydroxyl radical footprinting assays, and by binding studies with thymine analog substituted oligonucleotides. These results provide an explanation for TFIID-dependent DNA bending at the TATA element. TFIID binding shows phosphate contacts with the same residues that were found to be essential for TFIID interactions by methylation and thymine-specific modification interference assays. Based on previous studies implicating residues conserved between the direct repeats in DNA binding, as well as models of prokaryotic DNA binding proteins, these results also suggest a model in which the direct repeats of TFIID form two basic antiparallel beta ribbon arms that could contact DNA through the minor groove.