The photoinduced primary reaction of the biliverdin binding phytochrome Agp1 (Agp1-BV) from Agrobacterium tumefaciens was investigated by sub-picosecond time-resolved Vis pump-IR probe spectroscopy. Three time constants of tau(1)=0.7+/-0.05 ps, tau(2)=3.3+/-0.2 ps and tau(3)=33.3+/-1.5 ps could be isolated from the dynamics of structurally specific marker bands of the BV chromophore. These results together with those of accompanying sub-picosecond Vis pump-Vis probe spectroscopy allow the extension of the reaction scheme for the primary process by a vibrationally excited electronic ground state. The isomerization at the C15=C16 bond occurs within the lifetime of the excited electronic state. A quantum yield of 0.094 for the primary reaction is determined, suggesting that the quantum yield of formation of the P(fr) far-red-absorbing form is already established in the primary photoreaction of the P(r) (red-absorbing) form.