Rationale: Chronic exposure to drugs of abuse alters neural processes that normally promote learning and memory. A context that is repeatedly paired with reinforcing drugs will acquire secondary reinforcing properties (conditioned reward). However, the effects of conditioned reward on spatial learning are unknown.
Objective: Using the conditioned place preference procedure and Morris water maze task, we examined the role of conditioned reward or aversion in spatial learning.
Materials and methods: Groups of rats acquired morphine (10 mg/kg), cocaine (10 mg/kg), or oral sucrose (15%) conditioned place preference (CPP). Another group of morphine-dependent rats acquired conditioned place aversion (CPA) to a context paired with precipitated opiate withdrawal induced by naloxone injections (1 mg/kg). To examine the role of conditioned reward or aversion in spatial learning, rats were then exposed to the previously morphine-, cocaine-, sucrose- or naloxone-paired context for 10 min before training of spatial learning in the Morris water maze.
Results: Exposure to the morphine- or cocaine-paired but not the sucrose- or the naloxone-paired context decreased the latency to find the platform in the Morris water maze test.
Conclusions: Our results provide the first evidence that conditioned drug reward promotes spatial learning. We speculate that this enhancement of spatial learning by the drug-paired context may promote contextual-cue-induced relapse to drug taking by facilitating exploratory drug-seeking behaviors.