The maintenance of meiotic prophase arrest in fully grown vertebrate oocytes depends on the activity of a G(s) G-protein that activates adenylyl cyclase and elevates cAMP, and in the mouse oocyte, G(s) is activated by a constitutively active orphan receptor, GPR3. To determine whether the action of luteinizing hormone (LH) on the mouse ovarian follicle causes meiotic resumption by inhibiting GPR3-G(s) signaling, we examined the effect of LH on the localization of Galpha(s). G(s) activation in response to stimulation of an exogenously expressed beta(2)-adrenergic receptor causes Galpha(s) to move from the oocyte plasma membrane into the cytoplasm, whereas G(s) inactivation in response to inhibition of the beta(2)-adrenergic receptor causes Galpha(s) to move back to the plasma membrane. However, LH does not cause a change in Galpha(s) localization, indicating that LH does not act by terminating receptor-G(s) signaling.