Purpose: Previous studies indicated that humoral or cellular immunity against murine vascular endothelial growth factor 2 (mFlk-1) was elicited to inhibit tumor growth. Here we describe a genetic fusion vaccine, pMBD2-mFlk-1, based on the targeting of a modified mFlk-1 to antigen-presenting cells by a murine beta-defensin 2 (MBD2) protein to induce both humoral and cellular immunity against mFlk-1, with the targeting especially focused on immature dendritic cells.
Experimental design: The protective and therapeutic antitumor immunity of the fusion vaccine was investigated in mouse models. Antiangiogenesis effect was detected by immunohistochemical staining and alginate-encapsulate tumor cell assay. The mechanisms of the fusion vaccine were primarily explored by detection of autoantibodies and CTL activity and confirmed by the deletion of immune cell subsets.
Results: The fusion vaccine elicited a strong protective and therapeutic antitumor immunity through antiangiogenesis in mouse models, and this worked through stimulation of an antigen-specific CD8+ T-cell response as well as a specific B-cell response against mFlk-1. The findings were confirmed by depletion of immune cell subsets and in knockout mice.
Conclusion: Our study showed that a fusion vaccine based on self immune peptide (MBD2) and self antigen (mFlk-1) induced autoimmunity against endothelial cells, resulting in inhibition of tumor growth, and could be further exploited in clinical applications of cancer immunotherapy.