High-resolution array-based comparative genomic hybridization of bladder cancers identifies mouse double minute 4 (MDM4) as an amplification target exclusive of MDM2 and TP53

Clin Cancer Res. 2008 May 1;14(9):2527-34. doi: 10.1158/1078-0432.CCR-07-4129.

Abstract

Purpose: Loss of p53 function in urothelial cell carcinoma (UCC) by mutation or inactivation disrupts normal cell cycle checkpoints, generating a favorable milieu for genomic instability, a hallmark of UCC. The aim of this study was to characterize novel DNA copy number changes to identify putative therapeutic targets.

Experimental design: We report our findings using array comparative genomic hybridization on a whole-genome BAC/PAC/cosmid array with a median clone interval of 0.97 Mb to study a series of UCC cases. TP53 status was determined by direct sequencing, and an in-house tissue microarray was constructed to identify protein expression of target genes.

Results: Array comparative genomic hybridization allowed identification of novel regions of copy number changes in addition to those already known from previous studies. A novel amplification previously unreported in UCC was identified at 1q32. A chromosome 1 tile path array was used to analyze tumors that showed gains and amplification; the mouse double minute 4 (MDM4) homologue was identified as the amplified gene. MDM4 mRNA expression correlated with copy number and tumor grade. Copy number changes of MDM4 and MDM2 occurred exclusively in tumors with wild-type p53. Overexpression of MDM4 corresponded to disruption of p53 transcriptional activity. Immunohistochemistry on an independent series by tissue microarray identified an inverse relationship between Mdm4 and Mdm2, with Mdm4 expression highest in invasive UCC.

Conclusion: The data indicate that gain/amplification and overexpression of MDM4 is a novel molecular mechanism by which a subset of UCC escapes p53-dependent growth control, thus providing new avenues for therapeutic intervention.

MeSH terms

  • Cell Cycle Proteins
  • Gene Amplification*
  • Gene Dosage
  • Gene Expression Profiling
  • Genes, p53*
  • Humans
  • Hybridization, Genetic
  • Neoplasm Staging
  • Nuclear Proteins / genetics*
  • Oligonucleotide Array Sequence Analysis
  • Proto-Oncogene Proteins / genetics*
  • Proto-Oncogene Proteins c-mdm2 / genetics*
  • Tissue Array Analysis
  • Urinary Bladder Neoplasms / genetics*
  • Urinary Bladder Neoplasms / metabolism
  • Urinary Bladder Neoplasms / pathology

Substances

  • Cell Cycle Proteins
  • MDM4 protein, human
  • Nuclear Proteins
  • Proto-Oncogene Proteins
  • MDM2 protein, human
  • Proto-Oncogene Proteins c-mdm2