Cadmium ions are a potent carcinogen in animals, and cadmium is a toxic metal of significant environmental importance for humans. Response curves were used to investigate the effects of cadmium chloride on the growth of Camplyobacter jejuni. In vitro, the bacterium showed reduced growth in the presence of 0.1 mm cadmium chloride, and the metal ions were lethal at 1 mm concentration. Two-dimensional gel electrophoresis combined with tandem mass spectrometry analysis enabled identification of 67 proteins differentially expressed in cells grown without and with 0.1 mm cadmium chloride. Cellular processes and pathways regulated under cadmium stress included fatty acid biosynthesis, protein biosynthesis, chemotaxis and mobility, the tricarboxylic acid cycle, protein modification, redox processes and the heat-shock response. Disulfide reductases and their substrates play many roles in cellular processes, including protection against reactive oxygen species and detoxification of xenobiotics, such as cadmium. The effects of cadmium on thioredoxin reductase and disulfide reductases using glutathione as a substrate were studied in bacterial lysates by spectrophotometry and nuclear magnetic resonance spectroscopy, respectively. The presence of 0.1 mm cadmium ions modulated the activities of both enzymes. The interactions of cadmium ions with oxidized glutathione and reduced glutathione were investigated using nuclear magnetic resonance spectroscopy. The data suggested that, unlike other organisms, C. jejuni downregulates thioredoxin reductase and upregulates other disulfide reductases involved in metal detoxification in the presence of cadmium.