Alzheimer's disease (AD) is an incurable neurodegenerative disorder that produces cognitive impairments that increase in severity as the disease progresses. The clinical symptoms are related to the presence of neuritic plaques and neurofibrillary tangles in the cerebral cortex which represent the pathophysiological hallmarks of AD. The debilitating nature of the disease can result in clinical burden for the patient, emotional strain for those that care for patients with Alzheimer's, and significant financial burden to society. The goals of current treatments, such as cholinesterase inhibitors and N-methyl-D-aspartate receptor antagonist, are to reduce the severity or slow the progression of cognitive symptoms. Although these treatments have demonstrated modest clinical benefit, they are unable to prevent, prohibit, or reverse the underlying pathophysiology of AD. Considerable progress has been made toward the development of disease-modifying treatments. Treatments currently under development mainly target the production, aggregation, and removal of existing amyloid beta-peptide aggregates which are believed to instigate the overall development of the neuropathology. Additional strategies that target tau pathology are being studied to promote neural protection against AD pathology. The current research has continued to expand our knowledge toward the development of disease modifying Alzheimer's therapies; however, no specific treatment strategy capable of demonstrating empirical efficacy and safety has yet to emerge.
Keywords: Alzheimer’s disease; current treatments; disease-modifying therapies; pathophysiology.