In this work, different modifications of photo-cross-linked poly(propylene fumarate)/poly(N-vinyl pyrrolidone) (PPF/PNVP) matrices were studied for their effect on the release kinetics of two ophthalmic drugs. The hydrophilicity of solid PPF/PNVP matrices loaded with acetazolamide (AZ) or timolol maleate (TM) was increased by adding various amounts of poly(ethylene glycol) (PEG) or by increasing the amount of N-vinyl pyrrolidone (NVP) in the polymer mixture prior to cross-linking. The in vitro release studies that utilized high-performance liquid chromatography for quantification revealed highly accelerated drug release from the matrices with increasing contents of the hydrophilic modifier. AZ was released from matrices containing 5% PEG in 56 days, which equals approximately 25% of the release period found for the unmodified matrices. A comparable acceleration in drug release was found for TM-loaded samples modified with 5% PEG. These studies further revealed that 1% PEG is sufficient to shorten the TM release duration by one-third. A significant acceleration in drug release was also found for the samples that were fabricated from a PPF-NVP mixture with increased NVP content. Matrix water content and erosion were assessed gravimetrically. Micro-computed tomography was used to image structural changes of the release systems and shed light on the drug-release mechanism. This study showed that hydrophilic matrix modifications of PPF/PNVP matrices accelerate the drug release of two ophthalmic drugs and represent a suitable tool to adjust drug-release rates from PPF-based matrices for different therapeutic needs.