Background: Previous studies have shown that individuals withdrawn from chronic opiate administration undergo substantial elevations of cortisol levels with blunted corticotropin (ACTH) rhythms and that these changes persist beyond the 7-10 days of acute withdrawal symptoms. However, there are no published studies of changes in expression of clock genes or of other neuropeptides related to circadian-rhythm regulation, which may influence relapse susceptibility.
Methods: Blood samples were collected from 8 healthy control subjects and 16 heroin addicts during pharmacologically unassisted withdrawal on the 3rd, 10th, and 30th days of abstinence at 3-hour intervals for 24 hours. Outcome measures were the relative expression of clock gene mRNA (hperiod1, hperiod2, hclock) and the levels of serum cortisol, plasma ACTH, beta-endorphin (beta-EP), leptin, neuropeptide Y, interleukin-2 (IL-2), and tumor necrosis factor (TNF) in these subjects.
Results: Compared with healthy volunteers, abstinent addicts showed disruptions in diurnal rhythms of hPER1 and hPER2 mRNA expression, along with disruptions in diurnal rhythms of cortisol, ACTH, beta-endorphin, leptin, and IL-2 release. Several of these disruptions (hPER1, hPER2, ACTH, beta-endorphin, and IL-2) persisted for the 30-day testing period, as did elevation of 24-hour levels of cortisol and decreases in 24-hour IL-2 and TNF levels.
Conclusions: These prolonged neurobiological changes may play a role in protracted opiate withdrawal symptoms and contribute to relapse vulnerability.