Mass spectrometry approaches to biomarker discovery in human fluids have received a great deal of attention in recent years. While mass spectrometry instrumentation and analysis approaches have been widely investigated, little attention has been paid to how sample handling can impact the plasma proteome and therefore influence biomarker discovery. We have investigated the effects of two main aspects of sample handling on MALDI-TOF data: repeated freeze-thaw cycles and the effects of long-term storage of plasma at -70° C. Repeated freeze-thaw cycles resulted in a trend towards increasing changes in peak intensity, particularly after two thaws. However, a 4-year difference in long-term storage appears to have minimal effect on protein in plasma as no differences in peak number, mass distribution, or coefficient of variation were found between samples. Therefore, limiting freeze/thaw cycles seems more important to maintaining the integrity of the plasma proteome than degradation caused by long-term storage at -70° C.
Keywords: biomarker; long-term storage; mass spectrometry; plasma; proteomics.