Differential signaling activation by insulin and insulin-like growth factors I and II upon binding to insulin receptor isoform A

Endocrinology. 2009 Aug;150(8):3594-602. doi: 10.1210/en.2009-0377. Epub 2009 May 14.

Abstract

A variety of human malignancies overexpresses isoform A of the insulin receptor (IR-A) and produces IGFs (IGF-I and/or IGF-II). IR-A binds IGF-II with high affinity (although 4-fold lower than that for insulin), whereas it binds IGF-I with low affinity (approximately 30-fold lower than that for insulin). However, in engineered cells expressing only the IR-A, but not IGF-I receptor (R(-)/IR-A cells), IGF-II is a more potent mitogen than insulin. Herein, we investigated downstream signaling of IGF-II, IGF-I, and insulin in R(-)/IR-A cells to better understand their role in cell growth. We found that despite inducing a lower IR-A autophosphorylation than insulin, IGF-II was more potent than insulin for activating p70S6 kinase (p70S6K) and approximately equally potent in activating the early peaks of ERK1/2 and Akt. However, ERK1/2 activation persisted longer after IGF-II, whereas Akt activation persisted longer after insulin. Therefore, cells stimulated with IGF-II had a higher p70S6K/Akt activation ratio than cells stimulated with insulin. Remarkably, IGF-I also elicited a similar signaling pattern as IGF-II, despite inducing minimal IR-A autophosphorylation. ERK1/2 and protein kinase C seem to be involved in the preferential stimulation of p70S6K by IGFs. In conclusion, our study has identified a novel complex role of IR-A, which not only elicits a unique signaling pattern after IGF-II binding but also induces substantial downstream signaling upon binding to the low-affinity ligand IGF-I. These results underline the role of IR-A in physiology and disease.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptor Proteins, Signal Transducing
  • Animals
  • Blotting, Western
  • Carrier Proteins / metabolism
  • Cell Cycle Proteins
  • Cell Line
  • Eukaryotic Initiation Factors
  • Hypoglycemic Agents / pharmacology*
  • Insulin / metabolism
  • Insulin / pharmacology*
  • Insulin-Like Growth Factor I / metabolism
  • Insulin-Like Growth Factor I / pharmacology*
  • Insulin-Like Growth Factor II / metabolism
  • Insulin-Like Growth Factor II / pharmacology*
  • JNK Mitogen-Activated Protein Kinases / metabolism
  • Mice
  • Mitogen-Activated Protein Kinase 1 / metabolism
  • Mitogen-Activated Protein Kinase 3 / metabolism
  • Phosphoproteins / metabolism
  • Phosphorylation / drug effects
  • Protein Isoforms / metabolism
  • Protein Kinase C / antagonists & inhibitors
  • Protein Kinase C / metabolism
  • Proto-Oncogene Proteins c-akt / metabolism
  • Receptor, Insulin / metabolism*
  • Reverse Transcriptase Polymerase Chain Reaction
  • Ribosomal Protein S6 Kinases, 70-kDa / metabolism
  • Signal Transduction / drug effects*
  • p38 Mitogen-Activated Protein Kinases / metabolism

Substances

  • Adaptor Proteins, Signal Transducing
  • Carrier Proteins
  • Cell Cycle Proteins
  • Eif4ebp1 protein, mouse
  • Eukaryotic Initiation Factors
  • Hypoglycemic Agents
  • Insulin
  • Phosphoproteins
  • Protein Isoforms
  • Insulin-Like Growth Factor I
  • Insulin-Like Growth Factor II
  • Receptor, Insulin
  • Proto-Oncogene Proteins c-akt
  • Ribosomal Protein S6 Kinases, 70-kDa
  • Protein Kinase C
  • JNK Mitogen-Activated Protein Kinases
  • Mitogen-Activated Protein Kinase 1
  • Mitogen-Activated Protein Kinase 3
  • p38 Mitogen-Activated Protein Kinases