Vascular endothelial dysfunction with aging: endothelin-1 and endothelial nitric oxide synthase

Am J Physiol Heart Circ Physiol. 2009 Jul;297(1):H425-32. doi: 10.1152/ajpheart.00689.2008. Epub 2009 May 22.

Abstract

To determine whether impaired endothelium-dependent dilation (EDD) in older adults is associated with changes in the expression of major vasoconstrictor or vasodilator proteins in the vascular endothelium, endothelial cells (EC) were obtained from the brachial artery and peripheral veins of 56 healthy men, aged 18-78 yr. Brachial artery EC endothelin-1 (ET-1) [0.99 +/- 0.10 vs. 0.57 +/- 0.10 ET-1/human umbilical vein EC (HUVEC) intensity, P = 0.01] and serine 1177 phosphorylated endothelial nitric oxide synthase (PeNOS) (0.77 +/- 0.09 vs. 0.44 +/- 0.07 PeNOS/HUVEC intensity, P < 0.05) (quantitative immunofluorescence) were greater, and EDD (peak forearm blood flow to intrabrachial acetylcholine) was lower (10.2 +/- 0.9 vs. 14.7 +/- 1.7 ml.100 ml(-1).min(-1), P < 0.05) in older (n = 18, 62 +/- 1 yr) vs. young (n = 15, 21 +/- 1 yr) healthy men. EDD was inversely related to expression of ET-1 (r = -0.39, P < 0.05). Brachial artery EC eNOS expression did not differ significantly with age, but tended to be greater in the older men (young: 0.23 +/- 0.03 vs. older: 0.33 +/- 0.07 eNOS/HUVEC intensity, P = 0.08). In the sample with venous EC collections, EDD (brachial artery flow-mediated dilation) was lower (3.50 +/- 0.44 vs. 7.68 +/- 0.43%, P < 0.001), EC ET-1 and PeNOS were greater (P < 0.05), and EC eNOS was not different in older (n = 23, 62 +/- 1 yr) vs. young (n = 27, 22 +/- 1 yr) men. EDD was inversely related to venous EC ET-1 (r = -0.37, P < 0.05). ET-1 receptor A inhibition with BQ-123 restored 60% of the age-related impairment in carotid artery dilation to acetylcholine in B6D2F1 mice (5-7 mo, n = 8; 30 mo, n = 11; P < 0.05). ET-1 expression is increased in vascular EC of healthy older men and is related to reduced EDD, whereas ET-1 receptor A signaling tonically suppresses EDD in old mice. Neither eNOS nor PeNOS is reduced with aging. Changes in ET-1 expression and bioactivity, but not eNOS, contribute to vascular endothelial dysfunction with aging.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Adolescent
  • Adult
  • Aged
  • Aging / physiology*
  • Animals
  • Arteries / physiology
  • Carotid Arteries / physiology
  • Dose-Response Relationship, Drug
  • Endothelin-1 / metabolism*
  • Endothelium, Vascular / growth & development*
  • Endothelium, Vascular / metabolism*
  • Forearm / blood supply
  • Humans
  • Male
  • Mice
  • Middle Aged
  • Nitric Oxide Synthase Type III / metabolism*
  • Phosphorylation
  • Receptor, Endothelin A / metabolism
  • Regional Blood Flow / drug effects
  • Regional Blood Flow / physiology
  • Vasodilation / physiology
  • Vasodilator Agents / pharmacology
  • Young Adult

Substances

  • Endothelin-1
  • Receptor, Endothelin A
  • Vasodilator Agents
  • Nitric Oxide Synthase Type III