The checkpoint response to replication stress

DNA Repair (Amst). 2009 Sep 2;8(9):1038-46. doi: 10.1016/j.dnarep.2009.04.014. Epub 2009 May 23.

Abstract

Genome instability is a hallmark of cancer cells, and defective DNA replication, repair and recombination have been linked to its etiology. Increasing evidence suggests that proteins influencing S-phase processes such as replication fork movement and stability, repair events and replication completion, have significant roles in maintaining genome stability. DNA damage and replication stress activate a signal transduction cascade, often referred to as the checkpoint response. A central goal of the replication checkpoint is to maintain the integrity of the replication forks while facilitating replication completion and DNA repair and coordinating these events with cell cycle transitions. Progression through the cell cycle in spite of defective or incomplete DNA synthesis or unrepaired DNA lesions may result in broken chromosomes, genome aberrations, and an accumulation of mutations. In this review we discuss the multiple roles of the replication checkpoint during replication and in response to replication stress, as well as the enzymatic activities that cooperate with the checkpoint pathway to promote fork resumption and repair of DNA lesions thereby contributing to genome integrity.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Cell Cycle*
  • DNA Repair
  • DNA Replication*
  • Humans
  • Neoplasms / genetics
  • Neoplasms / pathology
  • Stress, Physiological*
  • Transcription, Genetic