In vitro biotransformation of 2-methylpropene (isobutene): epoxide formation in mice liver

Arch Toxicol. 1991;65(4):263-7. doi: 10.1007/BF01968959.

Abstract

Until now, no data are available concerning the biotransformation and toxicity of 2-methylpropene (or isobutene), a gaseous alkene widely used in industry (rubber, fuel additives, plastic polymers, adhesives, antioxidants). In this work, the biotransformation of 2-methylpropene (MP) has been studied, using total liver homogenates of mice, supplemented with a NADPH-generating system. In analogy to other olefins, 2-methylpropene is metabolized to its epoxide 2-methyl-1,2-epoxypropane (MEP), as proved by the identification by gas chromatography coupled with mass spectrometry. The epoxidation is cytochrome P-450 dependent, as shown by experiments in the absence of the NADPH-generating system and in the presence of various concentrations of metyrapone and SKF 525-A, two known inhibitors of the mono-oxygenases. A simple gas chromatographic headspace method has been developed for the quantitative determination of the epoxide formed. The formation of MEP is never linear in function of time and it reaches a maximum after 20 min. Thereafter is decreases continuously to undetectable levels. This observation can be explained by the immediate action of epoxide hydrolase and glutathione S-transferase, converting the epoxide to 2-methyl-1,2-propanediol and to the glutathione conjugate respectively. The involvement of both enzymes has been demonstrated by the addition of 3,3,3-trichloropropene oxide and indomethacin. These inhibitors of, respectively, epoxide hydrolase and glutathione S-transferase increase the epoxide formation in a significant way. The actual concentration of MEP is therefore not only dependent on its formation by cytochrome P-450 dependent mono-oxygenases, but also on its conversion by epoxide hydrolase and glutathione S-transferase, both very active in liver tissue.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alkenes / metabolism*
  • Alkenes / toxicity
  • Animals
  • Biotransformation
  • Cytochrome P-450 Enzyme System / metabolism
  • Epoxide Hydrolases / metabolism
  • Epoxy Compounds / metabolism*
  • Glutathione Transferase / metabolism
  • Liver / metabolism*
  • Male
  • Mice
  • Mice, Inbred CBA
  • Mice, Inbred Strains
  • Oxidation-Reduction
  • Time Factors

Substances

  • Alkenes
  • Epoxy Compounds
  • 2-methyl-1,2-epoxypropane
  • Cytochrome P-450 Enzyme System
  • Glutathione Transferase
  • Epoxide Hydrolases
  • isobutylene