Physical interventions to interrupt or reduce the spread of respiratory viruses: systematic review

BMJ. 2009 Sep 21:339:b3675. doi: 10.1136/bmj.b3675.

Abstract

Objective: To review systematically the evidence of effectiveness of physical interventions to interrupt or reduce the spread of respiratory viruses.

Data sources: Cochrane Library, Medline, OldMedline, Embase, and CINAHL, without restrictions on language or publication. Data selection Studies of any intervention to prevent the transmission of respiratory viruses (isolation, quarantine, social distancing, barriers, personal protection, and hygiene). A search of study designs included randomised trials, cohort, case-control, crossover, before and after, and time series studies. After scanning of the titles, abstracts and full text articles as a first filter, a standardised form was used to assess the eligibility of the remainder. Risk of bias of randomised studies was assessed for generation of the allocation sequence, allocation concealment, blinding, and follow-up. Non-randomised studies were assessed for the presence of potential confounders and classified as being at low, medium, or high risk of bias.

Data synthesis: 58 papers of 59 studies were included. The quality of the studies was poor for all four randomised controlled trials and most cluster randomised controlled trials; the observational studies were of mixed quality. Meta-analysis of six case-control studies suggested that physical measures are highly effective in preventing the spread of severe acute respiratory syndrome: handwashing more than 10 times daily (odds ratio 0.45, 95% confidence interval 0.36 to 0.57; number needed to treat=4, 95% confidence interval 3.65 to 5.52), wearing masks (0.32, 0.25 to 0.40; NNT=6, 4.54 to 8.03), wearing N95 masks (0.09, 0.03 to 0.30; NNT=3, 2.37 to 4.06), wearing gloves (0.43, 0.29 to 0.65; NNT=5, 4.15 to 15.41), wearing gowns (0.23, 0.14 to 0.37; NNT=5, 3.37 to 7.12), and handwashing, masks, gloves, and gowns combined (0.09, 0.02 to 0.35; NNT=3, 2.66 to 4.97). The combination was also effective in interrupting the spread of influenza within households. The highest quality cluster randomised trials suggested that spread of respiratory viruses can be prevented by hygienic measures in younger children and within households. Evidence that the more uncomfortable and expensive N95 masks were superior to simple surgical masks was limited, but they caused skin irritation. The incremental effect of adding virucidals or antiseptics to normal handwashing to reduce respiratory disease remains uncertain. Global measures, such as screening at entry ports, were not properly evaluated. Evidence was limited for social distancing being effective, especially if related to risk of exposure-that is, the higher the risk the longer the distancing period.

Conclusion: Routine long term implementation of some of the measures to interrupt or reduce the spread of respiratory viruses might be difficult. However, many simple and low cost interventions reduce the transmission of epidemic respiratory viruses. More resources should be invested into studying which physical interventions are the most effective, flexible, and cost effective means of minimising the impact of acute respiratory tract infections.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review
  • Systematic Review

MeSH terms

  • Acute Disease
  • Communicable Disease Control / methods*
  • Epidemiologic Methods
  • Humans
  • Randomized Controlled Trials as Topic
  • Respiratory Tract Infections / prevention & control*
  • Virus Diseases / prevention & control*