Methods for the immunological detection of Bacillus anthracis in various environmental samples and the discrimination of B. anthracis from other members of the B. cereus group are not yet well established. To generate specific discriminating antibodies, we immunized rabbits, mice, and chickens with inactivated B. anthracis spores and, additionally, immunized rabbits and mice with the tetrasaccharide beta-Ant-(1-->3)-alpha-L-Rhap-(1-->3)-alpha-L-Rhap-(1-->2)-L-Rhap. It is a constituent of the exosporium glycoprotein BclA and contains the newly discovered sugar anthrose 2-O-methyl-4-(3-hydroxy-3-methylbutamido)-4,6-dideoxy-beta-D-glucose. The BclA protein is a major component of the exosporium of B. anthracis spores and is decorated by the tetrasaccharide indicated above. The anthrose-containing tetrasaccharide chain seems to be highly specific for B. anthracis, which makes it a key biomarker for the detection of these spores. The different immunizations led to anthrose-reactive polyclonal and monoclonal antibodies which were analyzed by various methods to characterize their ability to discriminate between B. anthracis and other Bacillus spp. Multiple applications, such as enzyme-linked immunosorbent assay, indirect immunofluorescence assay, and electron microscopy, revealed the specificities of the polyclonal and monoclonal antibodies generated for B. anthracis spore detection. All polyclonal antibodies were able to correctly identify the B. anthracis strains tested and showed only minimal cross-reactivities with other Bacillus strains. Moreover, the antibodies generated proved functional in a new capture assay for B. anthracis spores and could therefore be useful for the detection of spores in complex samples.