Purpose of review: The immune modulatory effects of total lymphoid irradiation (TLI) for graft-versus-host disease (GVHD) protection and transplantation tolerance following allogeneic bone marrow and organ transplantation have been studied for years in animal models. In preclinical models nonmyeloablative TLI conditioning alters residual host T cell subsets to favor regulatory natural killer T cells that suppress GVHD and prevent organ allograft rejection. These preclinical models have been recently adapted to human transplantation.
Recent findings: Patients receiving allogeneic hematopoietic cell transplantation for hematological malignancies conditioned with TLI and depletive T cell antibodies showed sustained donor chimerism, a reduced incidence of acute GVHD yet retained graft antitumor activity. As in the preclinical models, nonmyeloablative TLI conditioning significantly altered residual host T cell subsets favoring natural killer T cells, and the low incidence of GVHD was associated with increased IL-4 secretion by chimeric donor T cells. The TLI regimen used in cancer patients was modified to determine conditions for stable mixed chimerism and tolerance induction following combined hematopoietic cell and kidney transplantation.
Summary: This review summarizes the evolution of the preclinical TLI protocols and their recent translation to clinical trials, and discusses the mechanisms involved in protection from GVHD and the induction of tolerance following mixed chimerism.