Papillary lesions of the breast have an uncertain relationship to the histogenesis of breast carcinoma, and are thus diagnostically and managerially challenging. Molecular genetic studies have provided evidence that ductal carcinoma in situ and even atypical ductal hyperplasia are precursors of invasive carcinoma. However, papillary lesions have been seldom studied. We screened papillary breast neoplasms for activating point mutations in PIK3CA, AKT1, and RAS protein-family members, which are common in invasive ductal carcinomas. DNA extracts were prepared from sections of 89 papillary lesions, including 61 benign papillomas (28 without significant hyperplasia; 33 with moderate to florid hyperplasia), 11 papillomas with atypical ductal hyperplasia, 7 papillomas with carcinoma in situ, and 10 papillary carcinomas. Extracts were screened for PIK3CA and AKT1 mutations using mass spectrometry; cases that were negative were further screened for mutations in AKT2, BRAF, CDK, EGFR, ERBB2, KRAS, NRAS, and HRAS. Mutations were confirmed by sequencing or HPLC assay. A total of 55 of 89 papillary neoplasms harbored mutations (62%), predominantly in AKT1 (E17K, 27 cases) and PIK3CA (exon 20 >exon 9, 27 cases). Papillomas had more mutations in AKT1 (54%) than in PIK3CA (21%), whereas papillomas with hyperplasia had more PIK3CA (42%) than AKT1 (15%) mutations, as did papillomas with atypical ductal hyperplasia (PIK3CA 45%, AKT1 27%, and NRAS 9%). Among seven papillomas with carcinoma in situ, three had AKT1 mutations. The 10 papillary carcinomas showed an overall lower frequency of mutations, including 1 with an AKT1 mutation (in a tumor arising from a papilloma), 1 with an NRAS gene mutation (Q61H), and 2 with PIK3CA mutations (1 overlapping with the NRAS Q61H). These findings indicate that approximately two-thirds of papillomas are driven by mutations in the PI3CA/AKT pathway. Some papillary carcinomas may arise from these lesions, but others may have different molecular origins.