Ethanol-induced vasoconstriction is mediated via redox-sensitive cyclo-oxygenase-dependent mechanisms

Clin Sci (Lond). 2010 Mar 9;118(11):657-68. doi: 10.1042/CS20090352.

Abstract

The present study investigated the role of ROS (reactive oxygen species) and COX (cyclo-oxygenase) in ethanol-induced contraction and elevation of [Ca2+]i (intracellular [Ca2+]). Vascular reactivity experiments, using standard muscle bath procedures, showed that ethanol (1-800 mmol/l) induced contraction in endothelium-intact (EC50: 306+/-34 mmol/l) and endothelium -denuded (EC50: 180+/-40 mmol/l) rat aortic rings. Endothelial removal enhanced ethanol-induced contraction. Preincubation of intact rings with L-NAME [NG-nitro-L-arginine methyl ester; non-selective NOS (NO synthase) inhibitor, 100 micromol/l], 7-nitroindazole [selective nNOS (neuronal NOS) inhibitor, 100 micromol/l], oxyhaemoglobin (NO scavenger, 10 micromol/l) and ODQ (selective inhibitor of guanylate cyclase enzyme, 1 micromol/l) increased ethanol-induced contraction. Tiron [O2- (superoxide anion) scavenger, 1 mmol/l] and catalase (H2O2 scavenger, 300 units/ml) reduced ethanol-induced contraction to a similar extent in both endothelium-intact and denuded rings. Similarly, indomethacin (non-selective COX inhibitor, 10 micromol/l), SC560 (selective COX-1 inhibitor, 1 micromol/l), AH6809 [PGF2alpha (prostaglandin F2alpha)] receptor antagonist, 10 micromol/l] or SQ29584 [PGH2(prostaglandin H2)/TXA2 (thromboxane A2) receptor antagonist, 3 micromol/l] inhibited ethanol-induced contraction in aortic rings with and without intact endothelium. In cultured aortic VSMCs (vascular smooth muscle cells), ethanol stimulated generation of O2- and H2O2. Ethanol induced a transient increase in [Ca2+]i, which was significantly inhibited in VSMCs pre-exposed to tiron or indomethacin. Our data suggest that ethanol induces vasoconstriction via redox-sensitive and COX-dependent pathways, probably through direct effects on ROS production and Ca2+ signalling. These findings identify putative molecular mechanisms whereby ethanol, at high concentrations, influences vascular reactivity. Whether similar phenomena occur in vivo at lower concentrations of ethanol remains unclear.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Aorta / drug effects
  • Aorta / physiology
  • Calcium / metabolism
  • Cells, Cultured
  • Dose-Response Relationship, Drug
  • Endothelium, Vascular / drug effects
  • Endothelium, Vascular / physiology
  • Ethanol / pharmacology*
  • Male
  • Oxidation-Reduction
  • Prostaglandin-Endoperoxide Synthases / physiology*
  • Rats
  • Rats, Wistar
  • Reactive Oxygen Species / metabolism
  • Superoxides / metabolism
  • Tissue Culture Techniques
  • Vasoconstriction / drug effects*
  • Vasoconstriction / physiology
  • Verapamil / pharmacology

Substances

  • Reactive Oxygen Species
  • Superoxides
  • Ethanol
  • Verapamil
  • Prostaglandin-Endoperoxide Synthases
  • Calcium