Controlling intermolecular spin interactions of La@C(82) in empty fullerene matrices

Phys Chem Chem Phys. 2010 Feb 21;12(7):1618-23. doi: 10.1039/b913593f. Epub 2010 Jan 8.

Abstract

The ESR properties and crystal structures of solid-state La@C(82) in empty fullerene matrices were investigated by changing the concentration of La@C(82) and the species of an empty fullerene matrix: C(60), C(70), C(78)(C(2v)(3)), C(82)(C(2)) and C(84)(D(2d)(4)). The rotational correlation time of La@C(82) molecules tended to be shorter when La@C(82) is dispersed in larger fullerene matrices because large C(2n) molecules provide more space for La@C(82) molecules for rotating. La@C(82) dispersed in a hcp-C(82) matrix showed the narrowest hyperfine structure (hfs) due to the ordered nature of La@C(82) molecules in the C(82) crystal. On the other hand, in a C(60) matrix, La@C(82) molecules formed clusters because of the large different solubility, which leads to the ESR spectra being broad sloping features due to strong dipole-dipole and exchange interactions.