The effect of functional group size on the electron mobility in films of fullerene derivatives is investigated numerically. A series of four C(60) derivatives are formed by attaching saturated hydrocarbon chains to the C(60) cage via a methano bridge. For each of the derivatives investigated, molecular dynamics is used to generate a realistic material morphology. Quantum chemical methods are then used to calculate intermolecular charge transfer rates. Finally, Monte Carlo methods are used to simulate time-of-flight experiments and thus calculate the electron mobility. It is found that as the length of the aliphatic side chain increases, the configurational disorder increases and thus the mobility decreases.