Ag(2)O nanowalls consisting of densely packed nanoplates based on a Cu substrate were synthesized through a facile one-pot hydrothermal method. A new enzymeless glucose sensor of Cu-Ag(2)O nanowalls was fabricated. The Cu-Ag(2)O nanowalls showed higher catalysis on glucose oxidation than traditional Ag(2)O nanoflowers and Cu-Ag(2)O nanospindles. At an applied potential of 0.4 V, the sensor produced an ultrahigh sensitivity to glucose (GO) of 298.2 microA mM(-1). Linear response was obtained over a concentration range from 0.2 mM to 3.2 mM with a detection limit of 0.01 mM (S/N = 3). Satisfyingly, the Cu-Ag(2)O nanowalls modified electrode was not only successfully employed to eliminate the interferences from uric acid (UA) acid ascorbic (AA) and also fructose (FO) during the catalytic oxidation of glucose. The Cu-Ag(2)O nanowalls modified electrode allows highly sensitive, excellently selective, stable, and fast amperometric sensing of glucose and thus is promising for the future development of nonenzymatic glucose sensors.