Background: Fatigue is a common and disabling symptom of multiple sclerosis (MS). Previous studies reported that damage of the corticostriatothalamocortical circuit is critical in its occurrence.
Objective: To investigate the relationship between fatigue in MS and regional cortical and subcortical gray matter atrophy.
Design: Case-control study.
Setting: National Institutes of Health.
Participants: Twenty-four patients with MS and 24 matched healthy volunteers who underwent 3.0-T magnetic resonance imaging and evaluations of fatigue (Modified Fatigue Impact Scale) and depression (Center for Epidemiologic Studies Depression Scale).
Main outcome measures: Relationship between thalamic and basal ganglia volume, cortical thickness of frontal and parietal lobes, and, in patients, T2 lesion volume and normal-appearing white matter volume and the extent of fatigue.
Results: Patients were more fatigued than healthy volunteers (P = .04), while controlling for the effect of depression. Modified Fatigue Impact Scale score correlated with cortical thickness of the parietal lobe (r = -0.50, P = .01), explaining 25% of its variance. The posterior parietal cortex was the only parietal area significantly associated with the Modified Fatigue Impact Scale scores.
Conclusions: Cortical atrophy of the parietal lobe had the strongest relationship with fatigue. Given the implications of the posterior parietal cortex in motor planning and integration of information from different sources, our preliminary results suggest that dysfunctions in higher-order aspects of motor control may have a role in determining fatigue in MS.