Many animals move so fast that there is no time for sensory feedback to correct possible errors. The biomechanics of the limbs participating in such movements appear to be configured to simplify neural control. To test this general principle, we analysed how froghopper insects control the azimuth direction of their rapid jumps, using high speed video of the natural movements and modelling to understand the mechanics of the hind legs. We show that froghoppers control azimuth by altering the initial orientation of the hind tibiae; their mean angle relative to the midline closely predicts the take-off azimuth. This applies to jumps powered by both hind legs, or by one hind leg. Modelling suggests that moving the two hind legs at different times relative to each other could also control azimuth, but measurements of natural jumping showed that the movements of the hind legs were synchronised to within 32 mus of each other. The maximum timing difference observed (67 micros) would only allow control of azimuth over 0.4 deg. to either side of the midline. Increasing the timing differences between the hind legs is also energetically inefficient because it decreases the energy available and causes losses of energy to body spin; froghoppers with just one hind leg spin six times faster than intact ones. Take-off velocities also fall. The mechanism of azimuth control results from the mechanics of the hind legs and the resulting force vectors of their tibiae. This enables froghoppers to have a simple transform between initial body position and motion trajectory, therefore potentially simplifying neural control.