Background: For logistics, the US Army recommends Hextend (Hospira; 6% hetastarch in buffered electrolyte, HET) for battlefield resuscitation. To support this practice, there are laboratory data, but none in humans. To test the hypothesis that HET is safe and effective in trauma, we reviewed our first 6 months of use at a civilian level 1 trauma center.
Study design: From June 2008 to December 2008, trauma patients received standard of care (SOC) +/- 500 to 1,000 mL of HET within 2 hours of admission at surgeon discretion. Each case was reviewed, with waiver of consent.
Results: There were 1,714 admissions; 805 received HET and 909 did not. With HET versus SOC, overall mortality was 5.2% versus 8.9% (p = 0.0035) by univariate analysis. Results were similar after penetrating injury only (p = 0.0016) and in those with severe injury, defined by Glasgow Coma Scale <9 (p = 0.0013) or Injury Severity Score >26 (p = 0.0142). After HET, more patients required ICU admission (40.9% vs. 34.5%; p = 0.0334) and transfusions of blood (34.4% vs. 20.2%; p = 0.0014) or plasma (20.7% vs. 12.2%; p = 0.0251), but there were no treatment-related differences in prothrombin time or partial thromboplastin time. The 24-hour urine outputs and requirements for blood, plasma, and other fluids were similar. However, increased early deaths with SOC implicate possible selection bias. If that factor was controlled for with multivariate analysis, the same trends were present, but the apparent treatment effects of HET were no longer statistically significant.
Conclusions: In the first trial to date in hemodynamically unstable trauma patients, and the largest trial to date in any population of surgical patients, initial resuscitation with HET was associated with reduced mortality and no obvious coagulopathy. A randomized blinded trial is necessary before these results can be accepted with confidence.
Copyright 2010 American College of Surgeons. Published by Elsevier Inc. All rights reserved.