Targeting Toll-like receptors on dendritic cells modifies the T(H)2 response to peanut allergens in vitro

J Allergy Clin Immunol. 2010 Jul;126(1):92-7.e5. doi: 10.1016/j.jaci.2010.04.003. Epub 2010 Jun 9.

Abstract

Background: Delivery of allergens with bacterial adjuvants has been shown to be a successful immunotherapeutic strategy for food allergy treatment in animal models. How microbial signals, acting through the innate immune system, reshape ongoing allergic responses is poorly understood.

Objective: To investigate the contribution of Toll-like receptors (TLRs) in the response to bacterial adjuvants, we designed an in vitro system to characterize the effect of heat-killed Escherichia coli vector (HKE) on peanut-induced responses of dendritic cells (DCs) and T cells.

Methods: Wild-type or TLR signaling-deficient bone marrow-derived DCs were pulsed with crude peanut extract (CPE) alone (50 microg/mL) in the presence of HKE (10(6)/mL). DC maturation was analyzed by means of flow cytometry. Treated DCs were cocultured with carboxyfluorescein succinimidyl ester (CFSE)-labeled CD4(+) T cells from sensitized mice. Cytokine production from DCs and T cells was measured by using Bioplex assays.

Results: Peanut-pulsed DCs induced the production of IL-4, IL-5, and IL-13, as well as IL-17 and IFN-gamma, from primed T cells. Adding HKE to CPE-pulsed DCs resulted in a significant decrease in T(H)2 cytokine production associated with an increase in IFN-gamma levels and profound attenuation of T-cell proliferation. These effects were linked to HKE-induced TLR-dependent changes in DC reactivity to CPE, especially the production of polarizing cytokines, such as IL-12.

Conclusions: TLR signals modulate peanut-induced DC maturation in vitro, leading to changes in the T-cell response to peanut. These TLR effects must be confirmed in vivo and might constitute another alternative for allergen immunotherapies.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Allergens / immunology*
  • Animals
  • Arachis / immunology*
  • Dendritic Cells / immunology*
  • Escherichia coli / physiology
  • Interferon-gamma / biosynthesis
  • Interleukin-10 / biosynthesis
  • Interleukin-12 / biosynthesis
  • Lymphocyte Activation
  • Mice
  • Mice, Inbred C57BL
  • Peanut Hypersensitivity / immunology
  • Peanut Hypersensitivity / therapy*
  • T-Lymphocytes / immunology
  • Th2 Cells / immunology*
  • Toll-Like Receptors / physiology*

Substances

  • Allergens
  • Toll-Like Receptors
  • Interleukin-10
  • Interleukin-12
  • Interferon-gamma