We reported that inhibiting matrix metalloproteinases (MMP), known to remodel the extracellular matrix, also down-regulated antigen-specific T-cell responses. However, the direct role of MMP2 and MMP9 in regulating intracellular function in T cells is unknown. Markers of cellular activation and cytokine profiles were examined in anti-CD3-stimulated wild-type C57BL/6 mouse-derived CD4(+) or CD8(+) T cells, or MMP2- or MMP9-deficient (-/-) mice. MMP-sufficient T cells were also treated with SB-3CT, a highly selective inhibitor of MMP2 and MMP9. The effect of MMP-specific inhibition on T cell-dependent, antigen-specific murine lung injury was examined in vivo. SB-3CT induced dose-dependent reductions in anti-CD3-stimulated T-cell proliferation. Although MMP2(-/-) cells were reduced 20%, anti-CD3-induced proliferation was down-regulated 80-85% in MMP9(-/-) or in SB-3CT-treated wild-type CD4(+) and CD8(+) T cells. Intracellular calcium flux was augmented in response to MMP inhibition or deficiency in the same cells, and IL-2 production was reduced in CD4(+) and CD8(+) MMP9(-/-) T cells. SB-3CT-mediated MMP2 and MMP9 inhibition abrogated antigen-specific CD8(+) T cell-mediated lung injury in vivo. MMPs, particularly MMP9, may function intracellularly to regulate T-cell activation. T cell-targeted MMP inhibition may provide a novel approach of immune regulation in the treatment of T cell-mediated diseases.