Experimental studies have demonstrated that dietary macronutrient distribution plays an important role in insulin regulation, a risk factor associated to obesity, diabetes and other metabolic disorders. To assess whether the macronutrient composition of the diet could be related to obesity onset by affecting the epigenetic regulation of gene expression, we investigated in rats the metabolic effects of two pair-fed isocaloric diets: control (rich in carbohydrates) and high fat diet (rich in fat; HFD). Compared to controls, HFD induced higher weight gain and adiposity and impaired glucose tolerance, which was accompanied by a slight increase in adiponectin levels and liver steatosis. Epididymal adipose tissue expression of the fatty acid synthase (FASN) gene and NADH dehydrogenase (ubiquinone) 1β-subcomplex 6 (NDUFB6) were significantly reduced in HFD group. These variations in mRNA levels were accompanied by changes in the methylation patterns of several CpG islands located in the promoter region of these genes. However, no correlations were found between gene expression and the methylation status. These results suggest that high fat intake produces overweighted rats independently of total energy intake. These diets could also induce some epigenetic changes in the promoters of key genes that could influence gene expression and may be behind metabolic alterations.
Copyright © 2010 Elsevier Inc. All rights reserved.