A novel technique is introduced for patterning and controllably merging two cultures of adherent cells on a microelectrode array (MEA) by separation with a removable physical barrier. The device was first demonstrated by separating two cardiomyocyte populations, which upon merging synchronized electrical activity. Next, two applications of this co-culture device are presented that demonstrate its flexibility as well as outline different metrics to analyze co-cultures. In a differential assay, the device contained two distinct cell cultures of neonatal wild-type and beta-adrenergic receptor (beta-AR) knockout cardiomyocytes and simultaneously exposed them with the beta-AR agonist isoproterenol. The beat rate and action potential amplitude from each cell type displayed different characteristic responses in both unmerged and merged states. This technique can be used to study the role of beta-receptor signaling and how the corresponding cellular response can be modulated by neighboring cells. In the second application, action potential propagation between modeled host and graft cell cultures was shown through the analysis of conduction velocity across the MEA. A co-culture of murine cardiomyocytes (host) and murine skeletal myoblasts (graft) demonstrated functional integration at the boundary, as shown by the progression of synchronous electrical activity propagating from the host into the graft cell populations. However, conduction velocity significantly decreased as the depolarization waves reached the graft region due to a mismatch of inherent cell properties that influence conduction.
(c) 2010 American Institute of Chemical Engineers